

#### Communication

## Ruthenium-Catalyzed C#C Bond Forming Transfer Hydrogenation: Carbonyl Allylation from the Alcohol or Aldehyde Oxidation Level Employing Acyclic 1,3-Dienes as Surrogates to Preformed Allyl Metal Reagents

Fumitoshi Shibahara, John F. Bower, and Michael J. Krische

J. Am. Chem. Soc., 2008, 130 (20), 6338-6339 • DOI: 10.1021/ja801213x • Publication Date (Web): 29 April 2008

#### Downloaded from http://pubs.acs.org on February 8, 2009



### More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 11 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML





# Ruthenium-Catalyzed C–C Bond Forming Transfer Hydrogenation: Carbonyl Allylation from the Alcohol or Aldehyde Oxidation Level Employing Acyclic 1,3-Dienes as Surrogates to Preformed Allyl Metal Reagents

Fumitoshi Shibahara, John F. Bower, and Michael J. Krische\* Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712 Received February 18, 2008; E-mail: mkrische@mail.utexas.edu

Ruthenium-catalyzed transfer hydrogenation ranks among the most powerful methods available for the reduction of polar functional groups,<sup>1</sup> yet reductive C–C bond formations catalyzed by ruthenium are highly uncommon.<sup>2–4</sup> We have shown that reductive C–C bond formation may be achieved under the conditions of catalytic hydrogenation<sup>5,6</sup> and, more recently, under the conditions of iridium-catalyzed transfer hydrogenation.<sup>7</sup> The iridium-catalyzed processes enable direct coupling of allenes<sup>7a</sup> and 1,3-cyclohexadiene<sup>7b</sup> to aldehydes or alcohols to furnish products of carbonyl allylation. While these proof of concept studies establish the use of allenes and dienes as surrogates to preformed allyl metal reagents, the iridium-catalyzed couplings were not applicable to acyclic 1,3-dienes.

Here, we report that under the conditions of ruthenium-catalyzed hydrogen autotransfer<sup>8,9</sup> 1,3-butadiene, isoprene, and 2,3-dimethylbutadiene couple to alcohols 1a-6a to furnish products of carbonyl allylation 1b-6b, 1c-6c, and 1d-6d, respectively. Under related transfer hydrogenation conditions employing isopropanol or formic acid as terminal reductant, aldehydes 7a-9a couple to isoprene to furnish products of carbonyl allylation 1c-3c, respectively. Thus, carbonyl allylation is achieved from the alcohol or aldehyde oxidation level. To our knowledge, these are the first examples of rutheniumcatalyzed C-C bond formation under the conditions of alcoholmediated transfer hydrogenation.<sup>2-4</sup> The branched regioselectivity observed in these couplings complements the linear regioselectivity observed in nickel-catalyzed diene-aldehyde reductive couplings.<sup>10-12</sup> The transfer hydrogenative couplings reported in this account enable byproduct-free carbonyl allylation that transcends the boundaries of oxidation level and represent an important step in the departure from preformed organometallic reagents in carbonyl addition chemistry.<sup>6h,7,13,14</sup>



Initially, a range of commercially available ruthenium catalysts were evaluated for their potential to couple isoprene to *p*-nitrobenzylalcohol under the conditions of hydrogen autotransfer. It was found that RuHCl(CO)(PPh<sub>3</sub>)<sub>3</sub> promotes formation of the desired adduct with excellent levels of regioselectivity (>95:5) and in good isolated yield using only 2.5 equiv of diene. The addition of *m*-nitrobenzoic acid (2.5 mol %) proved to be critical as only trace quantities of product are observed in the absence of acid. Additionally, acetone (2.5 mol %) was found to confer a small but reproducible improvement in reaction efficiency. Finally, in most cases, isolated yields are improved upon addition of exogenous phosphine ligand, (*p*-MeOPh)<sub>3</sub>P or *rac*-BINAP.<sup>15</sup> Under optimal conditions, benzylic alcohols **1a**–**6a** couple

Table 1. Ruthenium-Catalyzed Coupling of Acyclic Dienes to Alcohols  $1a\!-\!6a^{a}$ 

| (250 mo          | HQ<br>()<br>18) 1a-6 | RuHCl(<br>Ligan<br>Ar Ac<br>Sa <sup>m-NC</sup> | CO)(PPh <sub>3</sub> ) <sub>3</sub><br>id (Cond. A, I<br>etone (2.5 m<br>O <sub>2</sub> BzOH (2.5<br>HF (2 M), 95 | (5 mol%)<br>B or C)<br>ol%)<br>mol%)<br>°C | HO<br>CH <sub>3</sub><br>1b-6b            |
|------------------|----------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------|
| Entry            | Alcohol              | Product                                        | Aryl                                                                                                              | Conditions                                 | SYield (dr)                               |
| 1                | 1a                   | 1b                                             | <i>p</i> <b>-N</b> O₂Ph                                                                                           | в                                          | 84% (1.5:1)                               |
| 2                | 2a                   | 2b                                             | Ph                                                                                                                | в                                          | 6 <b>1</b> % (2:1)                        |
| 3                | 3a                   | 3b                                             | <i>p</i> -MeOPh                                                                                                   | с                                          | 76% (2:1)                                 |
| 4                | 4a                   | 4b                                             | <i>m</i> -MeOPh                                                                                                   | с                                          | 87% (2:1)                                 |
| 5                | 5a                   | 5b                                             | 2-Thienyl                                                                                                         | с                                          | 87% (1.5:1)                               |
| 6                | 6a                   | 6b                                             | $Ar = \rho - BrPh$                                                                                                | С                                          | 90% (2:1)                                 |
| H <sub>3</sub> C | HQ                   | Ar —                                           | As Above                                                                                                          | <b>→</b>                                   | H <sub>3</sub> C HO<br>CH <sub>3</sub> Ar |
| (250 mo          | 1%) 1a-6             | 3a                                             |                                                                                                                   |                                            | 1c-6c                                     |
| Entry            | Alcohol              | Product                                        | Aryl                                                                                                              | Conditions                                 | : Yield (dr)                              |
| 1                | 1a                   | 1c                                             | <i>p</i> -NO₂Ph                                                                                                   | Α                                          | 84% (2:1)                                 |
| 2                | 2a                   | 2c                                             | Ph                                                                                                                | С                                          | 93% (1:1)                                 |
| 3                | 3a                   | 3c                                             | <i>p</i> -MeOPh                                                                                                   | С                                          | 84% (1.5:1)                               |
| 4                | 4a                   | 4c                                             | <i>m</i> -MeOPh                                                                                                   | С                                          | 93% (1:1)                                 |
| 5                | 5a                   | 5c                                             | 2-Thienyl                                                                                                         | С                                          | 82% (1:1)                                 |
| 6                | 6a                   | 6c                                             | $Ar = \rho - BrPh$                                                                                                | С                                          | 75% (1:1)                                 |
| H <sub>3</sub> C | сн₃ Чо               | Ar —                                           | As Above                                                                                                          | H3<br>                                     | Ar                                        |
| (250 mol%) 1a-6a |                      | 6a                                             |                                                                                                                   |                                            | 1d-6d                                     |
| Entry            | Alcohol              | Product                                        | Aryl                                                                                                              | Conditions                                 | i Yield                                   |
| 1                | 1a                   | 1d                                             | <i>p</i> -NO₂Ph                                                                                                   | в                                          | 89%                                       |
| 2                | 2a                   | 2d                                             | Ph                                                                                                                | в                                          | 91%                                       |
| 3                | 3a                   | 3d                                             | <i>p</i> -MeOPh                                                                                                   | в                                          | 67%                                       |
| 4                | 4a                   | 4d                                             | <i>m</i> -MeOPh                                                                                                   | в                                          | 67%                                       |
| 5                | 5a                   | 5d                                             | 2-Thienyl                                                                                                         | в                                          | 63%                                       |
| 6                | 6a                   | 6d                                             | Ar = p - BrPh                                                                                                     | в                                          | 61%                                       |

<sup>*a*</sup> Cited yields are of isolated material. Conditions A employ no added ligand. Conditions B employ  $(p-\text{MeOPh})_3P$  (15 mol %) as ligand. Conditions C employ *rac*-BINAP (5 mol %) as ligand. See Supporting Information for detailed experimental procedures.

to isoprene to furnish products of carbonyl isoprenylation 1c-6c in good to excellent yield. Similarly, benzylic alcohols 1a-6a couple to butadiene to furnish products of crotylation 1b-6b, and use of 2,3-dimethylbutadiene as an allyl donor delivers products of reverse 2-methyl prenylation 1d-6d (Table 1). Aliphatic alcohols couple in diminished yield, however, allylic alcohols couple more efficiently. For example, isoprene couples to 1-nonanol and geraniol in 65% and 75% isolated yields, respectively.



Carbonyl allylation can also be achieved from the aldehyde oxidation level employing isopropanol or formic acid as terminal reductant, although increased loadings of diene are required. For example, under standard conditions, aldehydes 7a-9a couple to isoprene to furnish products of carbonyl allylation 1c-3c, respectively, in good to excellent yield. Thus, carbonyl allylation from the alcohol or aldehyde oxidation level is possible (Table 2).

*Table 2.* Coupling of Isoprene to Representative Aldehydes under Conditions of Ruthenium-Catalyzed Transfer Hydrogenation<sup>a</sup>



<sup>*a*</sup> See Table 1 footnotes for details. *m*-NO<sub>2</sub>BzOH and acetone were not employed as additives.

A plausible mechanism involves alcohol dehydrogenation to generate a ruthenium hydride, which hydrometalates the less substituted olefin of isoprene to deliver the secondary  $\sigma$ -allyl metal haptomer. Carbonyl addition from the more stable primary  $\sigma$ -allyl haptomer through a six-centered transition structure accounts for branched regioselectivity. Consistent with this interpretation, coupling of isoprene to *deuterio*-**2a** provides *deuterio*-**2c**, with deuterium at the benzylic position (>95%), the allylic methyl (32%), and the allylic methine (14%). Coupling of isoprene to aldehyde **8a** using isopropanol- $d_8$  as terminal reductant provides *deuterio*-**2c'**, which incorporates deuterium at the allylic methyl (19%) and the allylic methine (10%). Incomplete deuterium incorporation likely stems from reversible hydrometalation of isoprene. Mechanisms involving reversible diene hydrometalation in advance of diene—aldehyde oxidative coupling cannot be excluded on the basis of available data.



In summary, we report the first C-C couplings under the conditions of ruthenium-catalyzed transfer hydrogenation employing alcohols as terminal reductants. For such transfer hydrogenative couplings, hydrogen embedded within isopropanol or an alcohol substrate is redistributed among reactants to generate nucleophile-electrophile pairs, enabling carbonyl addition from the aldehyde or alcohol oxidation level. Stereoselective variants of these and other alcohol-unsaturate couplings are currently under investigation.

**Acknowledgment** is made to Johnson & Johnson, Merck, the Welch Foundation, the ACS-GCI, the NIH-NIGMS (RO1-GM069445) and the Donald D. Harrington Faculty Fellows Program for partial support of this research.

**Supporting Information Available:** Experimental procedures and spectral data for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

#### References

- For selected reviews of ruthenium-catalyzed transfer hydrogenation, see:

   (a) Zassinovich, G.; Mestroni, G.; Gladiali, S. Chem. Rev. 1992, 92, 1051.
   (b) Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97. (c) Noyori, R.; Yamakawa, M.; Hashiguchi, S. J. Org. Chem. 2001, 66, 7031. (d) Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40, 40. (e) Noyori, R. Angew. Chem., Int. Ed. 2002, 41, 2008. (f) Noyori, R. Adv. Synth. Catal. 2003, 345, 15. (g) Muňiz, K. Angew. Chem., Int. Ed. 2005, 44, 6622. (h) Noyori, R. Chem. Commun. 2005, 1807. (i) Gladiali, S.; Alberico, E. Chem. Soc. Rev. 2006, 35, 226. (j) Ikariya, T.; Murata, K.; Noyori, R. Org. Biomol. Chem. 2006, 4, 393. (k) Ikariya, T.; Blacker, A. J. Acc. Chem. Res. 2007, 40, 1300.
- (2) For a review of ruthenium-catalyzed alkene hydroformylation, see: Kalck, P.; Peres, Y.; Jenck, J. Adv. Organomet. Chem. 1991, 32, 121.
- (3) For ruthenium-catalyzed reductive C-C bond formations beyond alkene hydroformylation, see: (a) Tsuji, Y.; Mukai, T.; Kondo, T.; Watanabe, Y. J. Organomet. Chem. **1989**, 369, C51. (b) Kondo, T.; Ono, H.; Satake, N.; Mitsudo, T.-a; Watanabe, Y. Organometallics **1995**, 14, 1945. (c) Yu, C.-M.; Lee, S.; Hong, Y.-T.; Yoon, S.-K. Tetrahedron Lett. **2004**, 45, 6557.
- (4) For selected reviews of ruthenium-catalyzed C-C coupling, see: (a) Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067. (b) Kondo, T.; Mitsudo, T.-a. Curr. Org. Chem. 2002, 6, 1163. (c) Dérien, S.; Monnier, F.; Dixneuf, P. H. Top. Organomet. Chem. 2004, 11, 1.
- (5) For selected reviews of hydrogenative C-C coupling, see: (a) Ngai, M.-Y.; Kong, J.-R.; Krische, M. J. J. Org. Chem. 2007, 72, 1063. (b) Iida, H.; Krische, M. J. Top. Curr. Chem. 2007, 279, 77. (c) Skucas, E.; Ngai, M.-Y.; Komanduri, V.; Krische, M. J. Acc. Chem. Res. 2007, 40, 1394.
- (6) For recent examples, see: C=X vinylation: (a) Kong, J.-R.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 718. (b) Skucas, E.; Kong, J.-R.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 7242. (c) Barchuk, A.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 8432. (d) Barchuk, A.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 12644. Aldol and Mannich addition: (d) Jung, C.-K.; Garner, S. A.; Krische, M. J. Org. Lett. 2006, 8, 519. (e) Jung, C.-K.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 12644. Aldol and Mannich addition: (A) Jung, C.-K.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 12644. Aldol and Mannich addition: (A) Jung, C.-K.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 17051. (f) Garner, S. A.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 17051. (f) Garner, S. A.; Krische, M. J. J. Org. Chem. 2007, 72, 5843. (g) Bee, C.; Iida, H.; Han, S. B.; Hassan, A.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 12678.
- (7) (a) Bower, J. F.; Skucas, E.; Patman, R. L.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 15134. (b) Bower, J. F.; Patman, R. L.; Krische, M. J. Org. Lett. 2008, 10, 1033.
- (8) For reviews of hydrogen autotransfer, see: (a) Guillena, G.; Ramón, D. J.; Yus, M. Angew. Chem., Int. Ed. 2007, 46, 2358. (b) Hamid, M. H. S. A.; Slatford, P. A.; Williams, J. M. J. Adv. Synth. Catal. 2007, 349, 1555.
- (9) For examples of C-C coupling that proceed by way of C-C bond forming redox isomerization, see: (a) Herath, A.; Li, W.; Montgomery, J. J. Am. Chem. Soc. 2008, 130, 469. (b) Herzon, S. B.; Hartwig, J. F J. Am. Chem. Soc. 2007, 129, 6690. and references cited therein.
- (10) Catalytic intermolecular diene-aldehyde reductive coupling: (a) Kimura, M.; Ezoe, A.; Shibata, K.; Tamaru, Y. J. Am. Chem. Soc. 1998, 120, 4033.
  (b) Takimoto, M.; Hiraga, Y.; Sato, Y.; Mori, M. Tetrahedron Lett. 1998, 39, 4543. (c) Kimura, M.; Fujimatsu, H.; Ezoe, A.; Shibata, K.; Shimizu, M.; Matsumoto, S.; Tamaru, Y. Angew. Chem., Int. Ed. 1999, 38, 397. (d) Kimura, M.; Shibata, K.; Koudahashi, Y.; Tamaru, Y. Tetrahedron Lett. 2000, 41, 6789. (e) Kimura, M.; Ezoe, A.; Tamaka, S.; Tamaru, Y. Angew. Chem., Int. Ed. 2001, 40, 3600. (f) Loh, T.-P.; Song, H.-Y.; Zhou, Y. Org. Lett. 2002, 67, 656. (h) Jang, H.-Y.; Huddleston, R. R.; Krische, M. J. Angew. Chem., Int. Ed. 2003, 42, 4074. (i) Bareille, L.; Le Gendre, P.; Moïse, C. Chem. Commun. 2005, 775. (j) Kimura, M.; Ezoe, A.; Mori, M.; Ivata, K.; Tamaru, Y. J. Am. Chem. Soc. 2006, 128, 8559. (k) Yang, Y.; Zhu, S.-F.; Duan, H.-F.; Zhou, C.-Y.; Wang, L.-X.; Zhou, Q.-L. J. Am. Chem. Soc. 2007, 129, 2248. (l) Sato, Y.; Hinata, Y.; Seki, R.; Oonishi, Y.; Saito, N. Org. Lett. 2007, 9, 5597.
- (11) For reviews encompassing nickel-catalyzed diene-aldehyde reductive coupling, see: (a) Tamaru, Y. J. Organomet. Chem. 1999, 576, 215. (b) Ikeda, S.-i. Angew. Chem., Int. Ed. 2003, 42, 5120. (c) Montgomery, J. Angew. Chem., Int. Ed. 2004, 43, 3890. (d) Modern Organo Nickel Chemistry; Tamaru, Y., Ed.; Wiley-VCH: Weinheim, Germany, 2005. (e) Kimuara, M.; Tamaru, Y. Top. Curr. Chem. 2007, 279, 173.
- (12) For ruthenium-catalyzed hydroacylation of 1,3-dienes empolying aldehydes as acyl donors, see: Mitsudo, T.-a.; Kondo, T.; Hiraishi, N.; Morisaki, Y.; Wada, K.; Watanabe, Y. Organometallics **1998**, *17*, 2131.
- (13) Carbonyl allylation via ene-type reaction typically requires highly activated aldehydes: (a) Mikami, K.; Shimizu, M. Chem. Rev. 1992, 92, 1021. (b) Berrisford, D. J.; Bolm, C. Angew. Chem., Int. Ed. Engl. 1995, 34, 1717. (c) Johnson, J. S.; Evans, D. A. Acc. Chem. Res. 2000, 33, 325.
- (14) Carbonyl allylation employing allylic acetates requires metallic reductants: Tamaru, Y. In Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E.-i., Ed.; Wiley-Interscience: New York, 2002; Vol. 2, p 1917. Also, see ref 4b.
- (15) RuHCl(CO)(L)<sub>3</sub> (L = (p-MeOPh)<sub>3</sub>P) is not an efficient catalyst, suggesting the active catalyst is ligated to both Ph<sub>3</sub>P and (p-MeOPh)<sub>3</sub>P.

JA801213X